3D Visualization has revolutionized the way buildings and spaces are designed, constructed, operated and maintained. Evaluating how and where to employ it efficiently and successfully is an emerging in-demand skill set. The 3D Visualization for the Built Environment microcredential will provide you with skills development in Building Information Modeling (BIM), 3D Rendering Tools, GIS, Digital Twins and Virtual Reality/3D Printing applications for design, presentation, construction and ongoing operations and maintenance of buildings and spaces.
This microcredential will teach students about the building envelope, its components, and the building science concepts that determine how a building interacts with its environment and surroundings. This microcredential is designed for anyone with an interest in building science. Whether a season building professional or a savvy homeowner, a knowledge of building science helps make design and material decisions that increase building efficiency and longevity.
Students will learn how to conceptually design and analyze the costs of constructing a small building that adheres to Building Science principles, which will lead to an energy-efficient, quiet, dry and durable enclosure. Students will discuss the fundamental scientific principles that support the design and construction of a low energy, long lasting building. Students will then examine the benefits and differences between a building science approach and traditional building practices. Students will apply this knowledge to sketch, design and construct a scale, conceptual model of a small building. Finally, students will analyze the material costs of this building and revise the design accordingly.
What role do you and the construction industry play in climate change? This course introduces the science of climate change, specifically its effects on the natural and built environments. Key concepts like carbon emissions, energy efficiency for new and existing structures, and lifecycle carbon will be explored. Students will examine considerations for all phases of construction – from purchasing to installation – to help reduce climate impacts. The intended audience are those currently working in the construction industry although there is no required prior learning or work experience to attend this course. Participants in the Climate Literacy for Construction microcredential will be expected to complete two modules to obtain competencies related to the evaluation, mitigation, and adaptation of climate change in the construction trades.
This course equips students with the knowledge and skills necessary to thrive in a low-carbon economy by emphasizing the analysis and management of environmental impacts in construction. Through learning about environmental regulations, sustainable practices, and innovative materials, students are prepared to contribute to reducing the carbon footprint in the construction industry.
The production, consumption and end-of-life of building materials will be reviewed using various tools, including Material Flow Analysis (MFA). Key points of intervention will be identified where changes to policy and regulation, design, typical construction processes and waste management can shift the industry into the circular economy. Understanding where construction materials come from, and their path from use through to disposal will identify the current barriers to circularity, and how these barriers can be dismantled. This course complements the Design for Disassembly and Deconstruction courses.
Design for Disassembly (DfD) is the act of planning for the repair, upgrade, adaptation, repurposing and reuse of buildings and their components. Although the life span of a building is generally longer than most products, they will end up being disposable if we don’t plan for their end-of-use. The generation of construction and demolition waste has enormous environmental, social and economic costs, all of which can be avoided by bringing the built environment into the circular economy. This course provides the skills to intervene at one of the most critical stages of a building’s life cycle, the design phase, to enable circularity. Case studies, industry standards and best practices will be drawn on to teach the principles of DfD. This course complements the Deconstruction and Construction Material Flow Analysis courses
The Essentials of Community Energy and Emissions Management microcredential offers a comprehensive and practical approach to understanding and implementing energy-efficient and clean energy solutions in communities. On-site renewable energy, zero-emission energy-efficient buildings, and zero-carbon transportation are the key themes of this program. This microcredential centers on learning how to create a Community Energy and Emissions Management Plan (CEEP), providing the foundational knowledge and skills needed to address the challenges of energy use and emissions in community planning and management.
This microcredential is ideal for professionals in the fields of urban planning, engineering, environmental science, and public administration. It is also beneficial for individuals looking to enhance their expertise in sustainable community development and energy management.
The Essentials Net-Zero and Passive House Construction microcredential is for individuals who want to gain the skills and knowledge to construct high-performance buildings to meet the BC Energy Step Code, Net-Zero Energy, and Passive House standards. Every industry practitioner will benefit from an applied understanding of the unique requirements of Net-Zero and Passive House design and construction.
The microcredential contains the essentials needed for understanding building enclosures, electrical and mechanical systems, and processes and considerations for these new codes and standards. The microcredential consists of four courses using practical examples of wood- framed construction from seasoned industry leaders. An optional hands-on lab course is available for those interested. This program is delivered online and is offered on a course-by-course basis.
Upon completion, learners will have:
This microcredential introduces participants to the construction trades sector, focusing on the essential principles of equity, diversity, and inclusion (EDI). Participants will learn to value the varied backgrounds and perspectives that team members bring to the job site and develop skills to identify and mitigate biases that can affect team performance. Through self-reflection and the examination of real-world examples and EDI initiatives, participants will gain the tools necessary to lead by example and cultivate a culture of belonging and allyship. This course combines face-to-face and online learning in a blended model.
This training supports learners in all trades to prevent, analyze, and fix issues with the building envelope that affect energy efficiency. Collaborative communication and respectful work are essential to the concept of house as a system, where all trades work together during the construction of a home to create the most energy-efficient product. The training will introduce solid building science with the intent of making tradespeople more informed about the importance of their work and how that work affects the other trades and impacts the performance of the home as a whole.
Employees in trades such as construction, electrical, HVAC, and plumbing, will gain skills and knowledge regarding energy efficiency in residential and commercial buildings. This upskilling opportunity will ensure employees have the necessary skills and abilities to perform their duties in an energy efficient and net zero environment.
In this course, you will learn to develop an effective framework for monitoring and evaluating construction projects using widely accepted industry methodologies, along with sustainable and equitable management practices. While the course is designed for individuals with experience in the construction sector who wish to expand their skills, prior experience is not a requirement. However, for optimal success, it is recommended but not mandatory, that participants have one of the following: three to five years of experience in the construction sector; a Red Seal in a construction-related field; or a certificate or diploma from a recognized construction-related program.
Canada’s residential, commercial, and institutional buildings account for 18% of our national greenhouse gas emissions. The adoption of zero-emission energy sources such as solar photovoltaic (PV), as an alternative to fossil fuels, represents a key part of Canada’s 2030 Emission Reduction Plan. This course provides students with foundational theory on solar photovoltaic technology and systems. Students learn the science behind how the sun’s energy is converted into electricity, the theory behind solar PV system operation, and the characteristics of different solar PV systems, components, and equipment.
This microcredential seeks to introduce students who have construction experience to the mass timber industry, and explore some of the fundamental features and tools associated with mass timber construction. The 5.0-credit microcredential is designed to provide students who have a background in construction with an introduction to the burgeoning more specialized field of mass timber construction. It will be of interest to carpenters, ironworkers, quantity surveyors, estimators, construction managers, 3-D modelers, developers, manufacturers, and designers. Virtually anyone within the construction field with an interest in expanding their expertise to mass timber.
This microcredential is relevant for tradespeople, such as Carpenters and Ironworkers, as well as those who design construction projects, such as Architects, Estimators, Digital Modelers and Engineers. It is relevant for those who plan projects (owners, developers, construction managers) and those who have other related connections like Building Officials. The connecting thread is construction, and the application is across the spectrum of roles.
The Supervising Net-Zero and Passive House Construction microcredential is for individuals in the construction industry, or those who have recently completed a related construction program, who are seeking to gain the skills, knowledge, and tools unique to supervising construction on Net-Zero, Net-Zero-Ready, or Passive House construction projects.
Whether they want to coordinate and supervise smaller teams and sub-trades on smaller projects (Part 9 buildings) or work with larger teams on complex projects (larger Part 9 or Part 3 wood-frame buildings), learners will develop their ability to manage compliance with the performance requirements of BC Energy Step Code and Net-Zero Energy and Passive House standards and prepare for the upcoming changes to the National Building Code.
The microcredential consists of five courses that build upon each other in knowledge and focus on practical examples in wood-frame buildings. Upon completion, learners will have:
The Whole-Building Life Cycle Assessment Professional microcredential provides the knowledge and skills needed to effectively use LCA in design decisions for works of construction. Developed in partnership with the Athena Sustainable Materials Institute, this microcredential consists of four courses delivered online by experienced LCA professionals through a combination of self-paced work and virtual live lectures.
Learners will gain foundational knowledge of life cycle thinking, embodied carbon, and LCA standards and methods that they will apply as they conduct whole-building LCAs and calculate the carbon impact of building materials using Athena’s free LCA software. Learners will complete the microcredential with a final project where they will undertake a thorough whole-building LCA and produce a comprehensive report in compliance with the national guidelines on whole-building LCA.
Tell us about your experience with our training. Complete this 2-4 minute survey.